3.204 \(\int \frac{1}{\sqrt{a+b \sec (e+f x)} (c+d \sec (e+f x))} \, dx\)

Optimal. Leaf size=216 \[ -\frac{2 d \tan (e+f x) \sqrt{\frac{a+b \sec (e+f x)}{a+b}} \Pi \left (\frac{2 d}{c+d};\sin ^{-1}\left (\frac{\sqrt{1-\sec (e+f x)}}{\sqrt{2}}\right )|\frac{2 b}{a+b}\right )}{c f (c+d) \sqrt{-\tan ^2(e+f x)} \sqrt{a+b \sec (e+f x)}}-\frac{2 \sqrt{a+b} \cot (e+f x) \sqrt{\frac{b (1-\sec (e+f x))}{a+b}} \sqrt{-\frac{b (\sec (e+f x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (e+f x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{a c f} \]

[Out]

(-2*Sqrt[a + b]*Cot[e + f*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[e + f*x]]/Sqrt[a + b]], (a + b)/(a -
b)]*Sqrt[(b*(1 - Sec[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[e + f*x]))/(a - b))])/(a*c*f) - (2*d*EllipticPi[(2
*d)/(c + d), ArcSin[Sqrt[1 - Sec[e + f*x]]/Sqrt[2]], (2*b)/(a + b)]*Sqrt[(a + b*Sec[e + f*x])/(a + b)]*Tan[e +
 f*x])/(c*(c + d)*f*Sqrt[a + b*Sec[e + f*x]]*Sqrt[-Tan[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.238235, antiderivative size = 216, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {3930, 3784, 3973} \[ -\frac{2 d \tan (e+f x) \sqrt{\frac{a+b \sec (e+f x)}{a+b}} \Pi \left (\frac{2 d}{c+d};\sin ^{-1}\left (\frac{\sqrt{1-\sec (e+f x)}}{\sqrt{2}}\right )|\frac{2 b}{a+b}\right )}{c f (c+d) \sqrt{-\tan ^2(e+f x)} \sqrt{a+b \sec (e+f x)}}-\frac{2 \sqrt{a+b} \cot (e+f x) \sqrt{\frac{b (1-\sec (e+f x))}{a+b}} \sqrt{-\frac{b (\sec (e+f x)+1)}{a-b}} \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (e+f x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{a c f} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b*Sec[e + f*x]]*(c + d*Sec[e + f*x])),x]

[Out]

(-2*Sqrt[a + b]*Cot[e + f*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[e + f*x]]/Sqrt[a + b]], (a + b)/(a -
b)]*Sqrt[(b*(1 - Sec[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[e + f*x]))/(a - b))])/(a*c*f) - (2*d*EllipticPi[(2
*d)/(c + d), ArcSin[Sqrt[1 - Sec[e + f*x]]/Sqrt[2]], (2*b)/(a + b)]*Sqrt[(a + b*Sec[e + f*x])/(a + b)]*Tan[e +
 f*x])/(c*(c + d)*f*Sqrt[a + b*Sec[e + f*x]]*Sqrt[-Tan[e + f*x]^2])

Rule 3930

Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))), x_Symbol] :> Dist[1
/c, Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[d/c, Int[Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e
 + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3973

Int[csc[(e_.) + (f_.)*(x_)]/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
), x_Symbol] :> Simp[(-2*Cot[e + f*x]*Sqrt[(a + b*Csc[e + f*x])/(a + b)]*EllipticPi[(2*d)/(c + d), ArcSin[Sqrt
[1 - Csc[e + f*x]]/Sqrt[2]], (2*b)/(a + b)])/(f*(c + d)*Sqrt[a + b*Csc[e + f*x]]*Sqrt[-Cot[e + f*x]^2]), x] /;
 FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a+b \sec (e+f x)} (c+d \sec (e+f x))} \, dx &=\frac{\int \frac{1}{\sqrt{a+b \sec (e+f x)}} \, dx}{c}-\frac{d \int \frac{\sec (e+f x)}{\sqrt{a+b \sec (e+f x)} (c+d \sec (e+f x))} \, dx}{c}\\ &=-\frac{2 \sqrt{a+b} \cot (e+f x) \Pi \left (\frac{a+b}{a};\sin ^{-1}\left (\frac{\sqrt{a+b \sec (e+f x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (e+f x))}{a+b}} \sqrt{-\frac{b (1+\sec (e+f x))}{a-b}}}{a c f}-\frac{2 d \Pi \left (\frac{2 d}{c+d};\sin ^{-1}\left (\frac{\sqrt{1-\sec (e+f x)}}{\sqrt{2}}\right )|\frac{2 b}{a+b}\right ) \sqrt{\frac{a+b \sec (e+f x)}{a+b}} \tan (e+f x)}{c (c+d) f \sqrt{a+b \sec (e+f x)} \sqrt{-\tan ^2(e+f x)}}\\ \end{align*}

Mathematica [A]  time = 9.95483, size = 254, normalized size = 1.18 \[ -\frac{2 \sec ^{\frac{3}{2}}(e+f x) \sqrt{\sec (e+f x)+1} \sqrt{\cos (e+f x) \sec ^2\left (\frac{1}{2} (e+f x)\right )} \sqrt{\frac{a \cos (e+f x)+b}{(a+b) (\cos (e+f x)+1)}} (c \cos (e+f x)+d) \left (c (c+d) \text{EllipticF}\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (e+f x)\right )\right ),\frac{a-b}{a+b}\right )+2 \left (c^2-d^2\right ) \Pi \left (-1;-\sin ^{-1}\left (\tan \left (\frac{1}{2} (e+f x)\right )\right )|\frac{a-b}{a+b}\right )+2 d^2 \Pi \left (\frac{c-d}{c+d};-\sin ^{-1}\left (\tan \left (\frac{1}{2} (e+f x)\right )\right )|\frac{a-b}{a+b}\right )\right )}{c f (c-d) (c+d) \sqrt{\sec ^2\left (\frac{1}{2} (e+f x)\right )} \sqrt{a+b \sec (e+f x)} (c+d \sec (e+f x))} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + b*Sec[e + f*x]]*(c + d*Sec[e + f*x])),x]

[Out]

(-2*Sqrt[(b + a*Cos[e + f*x])/((a + b)*(1 + Cos[e + f*x]))]*(d + c*Cos[e + f*x])*(c*(c + d)*EllipticF[ArcSin[T
an[(e + f*x)/2]], (a - b)/(a + b)] + 2*(c^2 - d^2)*EllipticPi[-1, -ArcSin[Tan[(e + f*x)/2]], (a - b)/(a + b)]
+ 2*d^2*EllipticPi[(c - d)/(c + d), -ArcSin[Tan[(e + f*x)/2]], (a - b)/(a + b)])*Sqrt[Cos[e + f*x]*Sec[(e + f*
x)/2]^2]*Sec[e + f*x]^(3/2)*Sqrt[1 + Sec[e + f*x]])/(c*(c - d)*(c + d)*f*Sqrt[Sec[(e + f*x)/2]^2]*Sqrt[a + b*S
ec[e + f*x]]*(c + d*Sec[e + f*x]))

________________________________________________________________________________________

Maple [A]  time = 0.31, size = 318, normalized size = 1.5 \begin{align*} -2\,{\frac{ \left ( 1+\cos \left ( fx+e \right ) \right ) ^{2} \left ( -1+\cos \left ( fx+e \right ) \right ) }{cf \left ( c+d \right ) \left ( c-d \right ) \left ( a\cos \left ( fx+e \right ) +b \right ) \left ( \sin \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{a\cos \left ( fx+e \right ) +b}{\cos \left ( fx+e \right ) }}}\sqrt{{\frac{\cos \left ( fx+e \right ) }{1+\cos \left ( fx+e \right ) }}}\sqrt{{\frac{a\cos \left ( fx+e \right ) +b}{ \left ( a+b \right ) \left ( 1+\cos \left ( fx+e \right ) \right ) }}} \left ({c}^{2}{\it EllipticF} \left ({\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }},\sqrt{{\frac{a-b}{a+b}}} \right ) +d{\it EllipticF} \left ({\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }},\sqrt{{\frac{a-b}{a+b}}} \right ) c-2\,{c}^{2}{\it EllipticPi} \left ({\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }},-1,\sqrt{{\frac{a-b}{a+b}}} \right ) +2\,{\it EllipticPi} \left ({\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }},-1,\sqrt{{\frac{a-b}{a+b}}} \right ){d}^{2}-2\,{\it EllipticPi} \left ({\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }},{\frac{c-d}{c+d}},\sqrt{{\frac{a-b}{a+b}}} \right ){d}^{2} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c+d*sec(f*x+e))/(a+b*sec(f*x+e))^(1/2),x)

[Out]

-2/f/c/(c+d)/(c-d)*(1/cos(f*x+e)*(a*cos(f*x+e)+b))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*(1/(a+b)*(a*cos(f*x
+e)+b)/(1+cos(f*x+e)))^(1/2)*(1+cos(f*x+e))^2*(c^2*EllipticF((-1+cos(f*x+e))/sin(f*x+e),((a-b)/(a+b))^(1/2))+d
*EllipticF((-1+cos(f*x+e))/sin(f*x+e),((a-b)/(a+b))^(1/2))*c-2*c^2*EllipticPi((-1+cos(f*x+e))/sin(f*x+e),-1,((
a-b)/(a+b))^(1/2))+2*EllipticPi((-1+cos(f*x+e))/sin(f*x+e),-1,((a-b)/(a+b))^(1/2))*d^2-2*EllipticPi((-1+cos(f*
x+e))/sin(f*x+e),(c-d)/(c+d),((a-b)/(a+b))^(1/2))*d^2)*(-1+cos(f*x+e))/(a*cos(f*x+e)+b)/sin(f*x+e)^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b \sec \left (f x + e\right ) + a}{\left (d \sec \left (f x + e\right ) + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*sec(f*x+e))/(a+b*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*sec(f*x + e) + a)*(d*sec(f*x + e) + c)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*sec(f*x+e))/(a+b*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a + b \sec{\left (e + f x \right )}} \left (c + d \sec{\left (e + f x \right )}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*sec(f*x+e))/(a+b*sec(f*x+e))**(1/2),x)

[Out]

Integral(1/(sqrt(a + b*sec(e + f*x))*(c + d*sec(e + f*x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b \sec \left (f x + e\right ) + a}{\left (d \sec \left (f x + e\right ) + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c+d*sec(f*x+e))/(a+b*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*sec(f*x + e) + a)*(d*sec(f*x + e) + c)), x)